ChatBox 1.129 Alpha

ChatBox 1.129 Alpha

] COLLABORATORS
TITLE :
ChatBox 1.129 Alpha
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

ChatBox 1.129 Alpha iii

Contents

1 ChatBox 1.129 Alpha 1
1.1 ChatBox -Thenew world of IRC e 1
1.2 Distribution e e |
1.3 Overview - Copyright, implementation, goals e 2
1.4 Acknowledgements, and thanks L 3
1.5 Requirements, and SEtUP L e e e 3
1.6 ChatBox’s Preferences File L e 4
1.7 ChatBox’s preferences facility e 6
1.8 ChatBox’s Random kick message file 9
1.9 ChatBox’s Menu ltems e e e e e 9
1.10 ChatBox’s ARexx Port e 10
1.11 ARexx: LOCAL command e 11
1.12 ARexx: NICKONCH command et e et e e s e e e e 12
1.13 ARexx: FINDNICK command e e e e e e e 12
1.14 ARexx: ISOPcommand e 12
1.15 ARexx: PATTERN command e e e e e e 13
1.16 ARexx: NAMES command L e 13
1.17 Formats for common IRC commands e 14
1.18 ARexx: WAIT command e e e 15
1.19 ARexx: CMD command e e e 16
1.20 ARexx: RAW command e 16
1.21 ARexx: MATCH command e e 17
1.22 Command set for ChatBox L e 18
1.23 Special notes on ChatBox’s command parser. e 21
1.24 Command: /READ e 22
1.25 Command: /JON e e e e 22
1.26 Command: /RAWWIN L o e 26
1.27 Command: /ECHO 27
1.28 Command: /NOTIFY o e e e e e 27

1.29

Command: /SEARCH e e 28

ChatBox 1.129 Alpha iv

1.30 Command: /IGNORE 28
1.31 Command: /DESCRIBE 29
1.32 Command: /RAW o e 30
1.33 Command: /WAIT e 30
1.34 Command: /KICK e e 31
1.35 Command: /KILL oo e 32
1.36 Command: /TOPIC 32
1.37 Command: /TIME e 32
1.38 Command: /TRACE e 33
1.39 Command: /SERVER e 33
1.40 Commands: /SIGNOFFE, /SIGN, /QUIT e e 33
1.41 Command: /STATS L 34
1.42 Command: /WHO e 34
1.43 Command: /WHOIS e 34
1.44 Command: /WHOWAS o e 35
1.45 Command: /JOIN 35
1.46 Command: /PING 35
1.47 Commands: /LEAVE, /L, /PART e e e e 36
1.48 Command: /LIST e 36
1.49 Command: /LINKSo e 37
1.50 Command: /NICK e 37
1.51 Command: /NOTICE 37
1.52 Command: /NAMES e 37
1.53 Command: /ME 38
1.54 DCC.CHAT.AS225 . . .« . e e e e e e e e e e e 39
1.55 Command: /MSG 39
1.56 Command: /MODE e 40
1.57 Command: /INVITE 40
1.58 Command: /INFO e 41
1.59 Command: /AWAY 41
1.60 Command: /ADMIN e 41
1.61 Command: /ALIAS 42
1.62 Command: /VERSION e 43
1.63 Command: /VOICE 43
1.64 Command: /CONNECT e e 44
1.65 Command: /CTCP 44
1.66 Commands: /OP, /DEOP e e 44
1.67 Commands: /BAN, /UNBAN 45

1.68 Command: /HELP e e 45

ChatBox 1.129 Alpha v

1.69
1.70
1.71
1.72
1.73
1.74
L.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
1.83
1.84
1.85

Command: /EXEC e e e 46
Command: /QUERY e 46
Command: /INEWWIN 46
Command: /MSGWINo e 47
Command: /ERRWIN © .. o 47
Command: /ADD 47
Command: /REM 49
Command: /STAT o e e 49
Command: /FRIENDS 50
Command: /FREE 50
Command: /LOG e e 51
Example /FRIENDS file e 51
Example /ALIAS file o e e e e e 52
Command: /LOAD 52
Command: /DCC o e e 53
The Future of ChatBox 54

ChatBox’s Author e e e e e 54

ChatBox 1.129 Alpha

1/55

Chapter 1

ChatBox 1.129 Alpha

1.1 ChatBox - The new world of IRC

Before you start
Overview
Acknowledgements
Requirements
Menus

Commands

ARexx Support
Preferences

The Prefs file
Distribution
Future

The Author

1.2 Distribution

As of ChatBox v1.145, distribution has moved to freely distributable so
long as the original archive found on Aminet is intact. No files may be
added, or removed. Clear?

Also, I would appreciate registration with the following information:

Full Name, Address, State/County/Province, and Country, E-Mail address,
and IRC nickname most often used on #Amiga.

ChatBox 1.129 Alpha

2/55

If you do not register with me, I will NOT respond to E-Mail, nor will I
take suggestions.

E-Mail registration to: Jweb@primenet.com Subject: CB REG

You will be placed on the ChatBox mailing list...

1.3 Overview - Copyright, implementation, goals

ChatBox was started as a personal project to overcome the limitations
that I experienced using the IRC clients currently available for the Amiga.
And I certainly did not like the UNIX version.

ChatBox is Copyright (C) 1994-1996 by JDW Development. This version is
currently an evaluation version, so, as with all software, use it at your
own risk. JDW Development will not be held liable for any damages resulting
during the use of this software. It is provided ’'as-is’ with no warranty,
neither expressed nor implied.

ChatBox alpha and beta versions may NOT be distributed.

The command set of ChatBox is implemented as the common ’slash’ command
method.

My goal in designing ChatBox is to allow complete operator control.
ChatBox will be designed in such a way that is simple for new users, yet
has the power for seasoned users.

I didn’t over ’idiot-proof’ ChatBox, so there are no cute requesters for
every little thing you wish to do.

Simplicity is the design goal. *I% do not like GUI’s to do such simple
tasks as are required on IRC.

This in mind, don’t ask for ’"DOCKS’, ’'REQUESTERS’=*, or ’'GADGETS’ unless
they ADD to the functionality of ChatBox’s communication facilities.
For example, no gadgets for ’'KICK’, or "BAN’... You can ADD smart kicks
and bans via ARexx, I will therefore leave that up to the user.

Currently under construction:

/DCC SEND Writing custom routines

Prefs Utility Not yet completed in evaluation version
Current known bugs/quirks:

Refresh errors Some artifacting
Crashes with "on-the-fly’ Prefs adjustments On History &

Scroll back only

Send bug reports to: Jjweb@primenet.com Subject: CB BUG
If you do not set the subject to "CB BUG", it WILL be overlooked. Bug reports

ChatBox 1.129 Alpha 3/55

are automatically processed by a program...

1.4 Acknowledgements, and thanks

All code contained in ChatBox is (C) 1994,1995 by JDW Developments.
Special thanks goes to:

Jim Huls Faithful alpha tester, without whom 100% of the bugs
would not have been found

Mike Latinovich Super "oof!’r" Deluxe! For his suggestions, and alpha
testing

Paul Reece For his special interest in playing with the ’'Friends’
feature

RobR For alpha testing and encouragement

Jonathon Potter For refreshing my memory about refreshing

Osma "Tau" Ahvenlampi for use of his DCC clients. And for MOST of the DCC.CHAT
code that ChatBox’s DCC Chat client uses.

Christoper Aldi for designing and allowing me to use ClassAct for
ChatBox’s preferences facility.

Josef Faulkner For the excellent ARexx scripts he wrote that really put
CB’s ARexx port to the test.

Sami Itkonen For his many suggestions, and calm outlook.

And many others whose names escape me...

1.5 Requirements, and setup

What is required to use ChatBox?

You’1ll need AmiTCP 3.0b2+, minimum of l-meg, 2.04+ of the Amiga 0S, and

a little patience while ChatBox is still under development. If you wish to
use DCC, you’ll need to assign a path to your DCC.TYPE.AS225 files to the
device: "DCC:", i.e.: Assign DCC: Work:Utilties/DCC

How do I install ChatBox?

There is no REAL installation necessary, other than putting AmiTCP
together. The only other task necessary is setting some ENV: variables.

The following Environment Variables can be set (and stored in ENVARC: if
you wish to make them permanent, and available upon reboot):

DCCPATH Path where you’d like dcc’s to go.

ChatBox 1.129 Alpha 4 /55

REALNAME Your real full name.

IRCSERVER Your default server.

USERNAME Your login name (don’t fake this)

IRCNAME Your default nickname

HOSTNAME Your host name (not your dialups)

NODENAME Your domain (ie: primenet.com)

DCCDIR Path where the AS225 DCC files are located

PUBSCREEN Public screen name, if it doesn’t exist, it will be created.
TEXTFONT Font for text window, names list, and gadgets
SCREENFONT Default font for custom public screen

SETUPFILE Alias file to load on startup...

PREFSFILE Prefsfile to load, useful for project icons

TRIGGER Trigger character for Friends commands. (default is ’%’)

NOTE: Do not enclose tooltype settings in QUOTES!!!

The above are also options on the command line, or can be specified as
ToolTypes in ChatBox’s Icon or in Project Icons.

ChatBox’s template is:

"USERNAME /K, HOSTNAME /K, NODENAME /K, IRCNAME /K, IRCSERVER/K, REALNAME /K, DCCPATH/K,
DCCDIR/K, PUBSCREEN/K, TEXTFONT/K, SCREENFONT/K, SETUPFILE/K"

Note that HOSTNAME must be specified, in one of the three ways (on the
commandline, as a tooltype, or in ENV:). The ENVironment variables are the
fallback in case options are not specified as tooltypes or on the command

line. Addendum: HOSTNAME may also be specified in Prefs.

Note that the preferences facility does not override the Above... ToolTypes
and CLI options have priority.

NOTE: Most tooltypes and CLI options will be removed in future versions,
get used to using Prefs...

1.6 ChatBox’s Preferences File

As of v1.148, the prefs file is no longer a binary file. Rather, it has
gone to a text based tagfile.

Included in this archive is a program called "CBCvtPrefs", as you may have
guessed, this program converts the old binary prefs file to the new ASCII file
format.

The default prefs file name is ’cb.prefs’, so, to convert ’'cb.prefs’ use:

CBCvtPrefs cb.prefs cbnew.prefs

After you have done this, you can delete the old prefs file, and replace it
with the new one (after renaming it to ’cb.prefs’).

Here are all of the supported tags, and their expected arguments:

They are grouped respective to the layout of the ChatBox prefs editor.

ChatBox 1.129 Alpha

5/55

NOTE: <string> can be any string of characters.
<decimal#> is an ascii representation of a decimal #

User Prefs:

REALNAME = <string>
LOGINNAME = <login>
PASSWORD = <password>
DEFNICK = <nickname>
USERINFO = <string>
HOSTNAME = <hostaddress>
DOMAIN = <localaddress>

Server Prefs:

DEFSERVER = <servername/IP>
AUTOJOIN = <channellist>
Paths Prefs:
DCCPATH = <dcc_clients>
DCCDIR = <dcc_receiveto>
ALIASFILE = <alias_file>
STARTUP = <startup_file>
DEFPATH = <default_path>

SOUNDFILE = <8SVX_sound>

Display Prefs:

SCREENMODEID = <32-Bit_ModeID>
SCREENTYPE = <screen_type>
Screen Types:

DEFAULT

PRIVATE

PUBLIC
PUBSCREEN = <pubscreen_name>
SCREENWIDTH = <decimal#>
SCREENHEIGHT = <decimal#>
SCREENDEPTH = <decimal#>
OVERSCAN = <overscan_type>

Overscan Types:

TEXT

STANDARD

MAX

VIDEO
AUTOSCROLL
TEXTFONT = <font/size>
SCREENFONT = <font/size>
SPACING = <decimal#>
SCROLLBACK = <decimal#>
HISTORYLINES = <decimal#>
WINDOWTOP = <decimal#>

(in hexadecimal, without leading "0x’)
(below)

(no arguments required, this is a flag)

(# of pixel spaces extra between text lines)
(# of kilobytes for scrollback buffer)
(# of history lines)

ChatBox 1.129 Alpha 6/55
WINDOWLEFT = <decimal#>
WINDOWWIDTH = <decimal#>
WINDOWHEIGHT = <decimal#>
Misc Prefs:
KICKMSGTYPE = <kick_type>
KickMsg Types:
DEFAULT
RANDOM
AREXX
DEFKICKMSG = <string>
KICKFILE = <kick_file>
DEFQUITMSG = <string>
USEWHOISREQ (no arguments required)
SIGNOFFISQUIT (no arguments required)
TRIGGER = <character> (character for triggering friends commands)
Prefs items in the Prefs menu:
SHOWISON (no arguments for any of these)
SHOWCTCP
SKIPMOTD
BEEPONMSG
BEEPONBEEP
BEEPONAWAY
INTERNALBEEP
EXTERNALBEEP
BEEPSCRFLASH
1.7 ChatBox’s preferences facility
In this section preferences will be described by it’s individual <>

Prefs Menu

components.

Edit... Brings up the preferences editor window.
Skip MOTD Skip MOTD server message (message of the day)
Show CTCP Show CTCP’s when they are sent.
Show ISON Show ISON server replies. (see:
Silent use of /NOTIFY
)
Beep Beep options
Private Msgs Beep on incoming messages
On BEEP Beep on incoming BEEP control codes
When Away Beep only when away, based on former two options
Internal Beep Not implemented
External 8SVX Not implemented

Flash Screen

Flash screen on BEEP

ChatBox 1.129 Alpha 7/55

Preferences Editor

The preference editor is separated into four pages.

User page

From this page you can modify information that ChatBox may share with other
users via various CTCP’s. Password is not used, and is completely ignored
in this version of ChatBox.

Real Name Your real name, or any info that you’d 1like to appear in WHOIS
Login Name The login name you use, significant when using IdentD.
Password * unused =
Def. Nick The nickname you’d like to begin each session with
UserInfo Information you’d like to appear on a USERINFO CTCP.
Host Name Your host’s named address
Domain Your named domain, if not the same as Host.

Defaults

Real Name: ChatBox IRC (C) 1994-1996 JDW Developments
Login Name: Unknown
Def. Nick: same as Login Name
UserInfo: ChatBox version string
Host Name: taken from ENV:HOSTNAME
Domain: taken from ENV:HOSTNAME

Server Page

You may specify the default server to use from here, as well as specifying
all the channels you wish to automatically join on connection.

There are no defaults.

The listviewbrowser is for the server list you have specified to select
from. You must have the file "cb.serv" in the home directory for this to
be active.

Notes on "Auto Join’: If more than one channel is specified, separate each
channel name with a comma and NO spaces. You may specify up to 10
channels to join, this is the current IRC server limit.

Paths Page

Clients The full path to your DCC clients =

Receive To The full path to the directory where DCC’s receives should go =
Alias File The full path and filename of your default alias file x

Startup Not implemented =

Def. Path Not implemented x
Sound File ©Not implemented =

Display Page

Screen/Window Prefs
Screen Mode Allows you to select a screen mode for ’'owned’ screens x
Window Font Font to use for gadgets, and text in the window =

ChatBox 1.129 Alpha

8/55

Screen Font Screen font, for title bar =

Public Screen The name of the public screen to open, or to open on.
Screen Types

Public S

Custom S
De

creen Use an ’'owned’ public screen, if named screen (Above)
does no exist, else open on existing named screen

creen Use a privately owned screen

fault Use the default public screen

Spacing Additional spacing between text lines in channel window
Buffer (K)
History Number of lines in History

Misc Page

Kick Prefs
Use Default Message Use the default kick message on all kicks if one

* NOTE:

Random F

ARexx Sc

Scrollback buffer size in Kilobytes

is not specified.
rom File Use a kick file, randomly selects a line.
See also:

Kick File

for format
ript Execute an ARexx Script for the kick.
(valid only from WHOIS Requester) The format used
for calling the script is:
script.rexx <nick> <address> <banmask>

Kick File Random Kick file, or ARexx script file to use,

depending on selection above. =

Default Kick Default kick message if one is not specified

NOTE: I
C

f you’d like CB to use a random kick message from the /KICK
ommand, and you don’t have ’'Random from file’ set in prefs,

simply use ’$’ as the ’'kick reason’, and CB will use the
random file. (An alias perhaps? "/alias rkick kick $0 $")

Use Whois Requester Open WHOIS Requester on double clicks in names
list.

/SignOff = /Quit With this option set (checked) /SIGNOFF will not
only send a ’"QUIT’ to the server, but it will
also close down the ChatBox Session. If not
checked, then it will merely QUIT the server
and close the connection, leaving the Session
open.

Default Quit Default message to use for quitting, if one is
not specified.

All prefs items above with a '+’ next to them allow the use of an

ASL requester of the appropriate type for option selection. Please
note that the ASL Library LOCKS input to the window, so that it

ignores
and the
and you
this in

incoming messages (i.e. from the timer.device, dcc clients,
connection). If you keep the ASL requester open for too long
are connected to a server, you WILL ping-timeout. Keep

mind! It is NOT a bug.

ChatBox 1.129 Alpha 9/55
1.8 ChatBox’s Random kick message file
If you wish to use random kick messages, you’ll have to create a kick file.
The format is quite simple. Just make some kick messages up, any amount,
and put them in a standard text file. Then, at the beginning of the file
put a ’#numlines’, so that ChatBox will know how many lines there are.
The ’#xx’ MUST be the first line of the file...
An example:
| —————————— > Cut Here <-———————————
#4
Get outta here!
Go away, you bother me!
Bruised?
Did I say I’d OP you-?
I ___________________________________
Easy enough?
1.9 ChatBox’s Menu ltems
Not all of ChatBox’s menus are active, some perform minimal <

actions, some
are completely active. Please read this section carefully so that you
understand which, and why.

Project Menu

New Window Open a new ChatBox window, same as issuing /NEWWIN command

Save Save the current project (prefs file, server list)

Save As... Save the current project under a new name

Open Not active... Subsequent releases will have this active
Quit Gee, what’s this for?

Channel Menu

Join. .. Simply puts the command /JOIN in the text entry gadget

Leave Leave the current channel (BUG, actually acts like QUIT)
*Channel Mode operations: (If item is checked, then that mode is set)

Secret Channel does not show up on LIST or WHOIS

Private Channel is Private

Moderated Only VOICED or OPPED users may speak here

Invite Only Can only join if invited

No Messaging Cannot send message to channel from outside the channel

Topic Protection Topic can only be changed by those with OPs.

ChatBox 1.129 Alpha

10/55

Op... Not active...
Ban...
Voice...

Keyword. .. This and the 3 above will be removed, most likely

Banlist Get channel banlist

Scripts (this menu will probably be removed entirely.)

Execute Start an ARexx script (why not just read the section on AREXX?)

End not active
Stop All not active

Prefs Menu
See section:

ChatBox’s Preferences Facility
Nameslist

All of the items under this menu perform the action on the selected name in

the nameslist.

Scrollback

Save... Save scrollback buffer
All Save ALL text

Current to End Save from top of current page to the end of buffer
Top to Current Save from top of buffer to bottom of current page

Visible Save current page (all visible lines)
Save As...

All Same as above...

Current to End

Top to Current

Visible ..
Clear Clear Scrollback buffer...

1.10 ChatBox’s ARexx Port

The Quick & Dirty: ChatBox’s port is named ’ChatBox’,

ChatBox.x’ for
subsequent invocations of ChatBox (where ’'x’ 1is a number).

The rest:
Currently supported Commands:
WAIT
- wait for text from ChatBox’s ARexx Port

CMD

— Send a ChatBox command as if it were entered manually

and '/

<_7

ChatBox 1.129 Alpha

11/55

Currently,

RAW
- Send a RAW IRC command

MATCH
- Match a "friend’s" address

NICKONCH
— Check if a nickname is currently Jjoined in a channel

FINDNICK
— Find a nick and return the channels where it is joined

ISOP
- Find out if a given <nick> has VOICE or OPs

PATTERN
— Check if a given pattern matches a given string.

NAMES
— Get ChatBox internal list of names for a given channel

LOCAL

- Similar to

/ECHO

but allows a custom header

FINDNICK is not implemented.

See the section on

Formats for command IRC commands
Also, see
Special notes on on ChatBox’s command parser.

1.11 ARexx: LOCAL command

COMMAND :

NICKONCH NICK/K CHANNEL/K STEM|VAR <variable>

PARAMETERS :

HDR/K Required! Header to use.
TXT/F/K Required! Text to place on line.

EXAMPLE:

LOCAL HDR ' [LocalTest]’ TXT ’'This is a test of the LOCAL command.’

Yields:
[LocalTest]

| This is a test of the LOCAL command.

ChatBox 1.129 Alpha

12 /55

1.12 ARexx: NICKONCH command

COMMAND :

NICKONCH NICK/K CHANNEL/K STEM|VAR <variable>

PARAMETERS

NICK/K

RESULTS:

Required! The nick to look for on CHANNEL
CHANNEL/K Required! The channel to search for NICK

stem.ISON or <variable> is set to 1 if NICK is on CHANNEL, else O

EXAMPLE:

NICKONCH N

if ison==1

ICK ’"SASCMan’ CHANNEL ’#amiga’ VAR ison

THEN

say ’SASCMan is on channel #amiga’

else

say ’SASCMan is not on channel #amiga’

1.13 ARexx: FINDNICK command

Not yet implemented.

1.14 ARexx: ISOP command

COMMAND :

ISOP NICK/K CHANNEL/K STEM|VAR <variable>

PARAMETERS

NICK/K

Required. Nick to check for OPs, VOICE, or even existence...

CHANNEL/K Required. Channel name to look on (must be joined)

RESULTS:

stem.I

o w N

EXAMPLE:

ISOP NICK

SOPPED,

if NICK
if NICK
if NICK
if NICK

or

is
is
is
is

<variable> is set to:

opped

voiced

not on the channel

not opped or voiced, but IS on channel

" SkyGuy’ CHANNEL ’#amiga’ VAR isopped

ChatBox 1.129 Alpha

13/55

if isopped == 1 THEN
say ’'SkyGuy is opped’
else if isopped == 2 THEN
say ’SkyGuy has wvoice’
else if isopped == 3 THEN
say ’SkyGuy is not on #amiga’
else
say ’SkyGuy is on #amiga, but is not opped or voiced’

1.15 ARexx: PATTERN command

COMMAND :
PATTERN ADDRESS/K PATT/K STEM|VAR <variable>
PARAMETERS:

ADDRESS The ’'string’ to match/check
PATT The pattern to match against

RESULTS:

For STEM: variable.ISMATCH is set to the BOOLEAN values 1 or O.
For VAR: variable is set to BOOLEAN 1 or O.

EXAMPLE:
PATTERN ADDRESS SASCMan! jweb@priment.com PATT «*!xjweb@*primenet.com VAR
ismatch

if ismatch THEN
say ’'We have a match!’

1.16 ARexx: NAMES command

COMMAND :
NAMES CHANNEL/K STEM|VAR <variable>
PARAMETERS:

CHANNEL The channel to get the names list from (you must be Jjoined on
this channel for a succesful return.

RESULTS:

For STEM: variable.USERS.0O-n, an array of ’'names’
For VAR: variable is set to a string of names, separated by spaces

EXAMPLE:

NAMES #amiga STEM names.
say names.USERS.1

ChatBox 1.129 Alpha

14 /55

1.17 Formats for common IRC commands

Only the most common RAW IRC command formats will be covered here. For a more
indepth
review of other IRC Commands see the IRC-RFC.

When someone sends a /msg or Jjust sends text to a channel it is sent with the
"PRIVMSG" IRC command:

Format for PRIVMSG:
Nick!user@host PRIVMSG recipient :message text
Recipient can be a channel or a nickname. Message text can also contain a
CTCP
(marked by a leading and trailing HEX $01).
When someone Jjoins a channel the "JOIN" command is used:

Format for JOIN:

Nick!user@host JOIN :channel

When someone leaves a channel, the "PART" command is used:
Format for PART:

Nick!user@host PART :channel

When someone signs off (quits), the "QUIT" command is used:
Format for QUIT:

Nick!user@host QUIT :signoff message

When someone issues a ’'/mode’ change, the "MODE" command is used:
Format for MODE:
Nick'!user@host MODE <flags> :parameters
Flags: i.e. +o, +b, -b, etc. Parameters can be a list of nick names

(for +o, +b, i.e.), or a list of addresses (for +/-b), a keyword (for +k),
or a limit number (for +1).

"/notice" takes the same format as PRIVMSG, only substituting NOTICE where
PRIVMSG 1is.

(_)

(_)

Nick is the Nick name of the user that invoked the command, user@host is his/her

address.

ChatBox 1.129 Alpha 15/55

HINT: To distinguish between a private "PRIVMSG" and a public "PRIVMSG" you need

only check if the first character of stem.CHANNEL is "#" for global channel, or <«
"&"

for server specific channel. If it is one of those characters, it is a public

message.

Now, you should have read about the commands first...

1.18 ARexx: WAIT command

COMMAND :
WAIT STEM|VAR <variable>
PARAMETERS:
NONE
RESULTS:

I recommend using a stem variable, which is invoked via: WAIT stem variable.
(don’t forget the trailing period!!!)

In the above example, all of ChatBox’s text information would be stored in
stem variable: ’'variable.x’

The defined stems are: TOKENS, NICK, ADDRESS, CMD, CHANNEL, LINE

TOKENS 1is an array that holds each token in the RAW IRC command line sent
by the server.
NICK is the nickname of the person that sent the command (or server address ¢
)
ADDRESS is the address of "NICK" (or server)
CMD is the command that was issued, or an error/reply number
CHANNEL is the recipient (target) of the "CMD’, CHANNEL is not necessarily
a channel name, it could be a nick name, if the action was private
LINE is the message text or parameters of the CMD line...
CTCP a BOOLEAN value (1 = TRUE, 0 = FALSE), tells if PRIVMSG was a CTCP

EXTRACTING TOKENS:
If the following command were received:

:SASCMan!~jweb@ip000.phx.primenet.com PRIVMSG #amiga :ChatBox rules! ;)

0 1 2 3 4 5 <- TOKENS
THEN:

stem.TOKENS.O0 = SASCMan!~jweb@ip000.phx.primenet.com

stem.TOKENS.1 = PRIVMSG

stem.TOKENS.2 = #amiga

stem.TOKENS.3 = :ChatBox

stem.TOKENS.4 = rules!

stem.TOKENS.5 = ;)

stem.NICK = SASCMan

ChatBox 1.129 Alpha

16 /55

stem.ADDRESS = jweb@ip000.phx.primenet.com
stem.CMD = PRIVMSG

stem.CHANNEL = #amiga

stem.LINE = ChatBox rules! ;)

In most circumstances you’ll not need the TOKENS.

you wish to pick the MESSAGE TEXT apart.

NOTES:
ChatBox will queue up to 256 lines of text... 1if your script is so slow
that this limit is too low, then you’re overdoing it. 256 lines of text

can easily reach memory usage of 100k of RAM (or more).
If the queue gets out of hand (i.e. scripts seem ’'lagged’), simply issue a
"/wait ON" command to flush the queue.
You should always issue a "CMD ' /wait on’" at the start of the script, and
a "CMD ’/wait off’"™ at the end of the script.
See the

/WAIT

command for more information.

1.19 ARexx: CMD command

COMMAND :

CMD

CMDLINE/F [VAR <variable>]

PARAMETERS :

CMDLINE A ChatBox '/’ (slash) command line. See example below.

RESULTS:

CMDLINE is executed by ChatBox’s parser as 1if it were typed in the command

entry gadget.
Currently, CMD returns nothing.

EXAMPLE:

address ’'ChatBox’
options results

CMD
CMD
CMD
CMD
CMD

’/msg | |stem.NICK| |’ Hello, buddy!’
"/join #amiga’

’/msg ' ||stem.CHANNEL| |’ re Everyone!’
"/op " ||stem.NICK

"' /server irc.some.other.net’

1.20 ARexx: RAW command

But they are invaluable when

ChatBox 1.129 Alpha 17 /55

COMMAND :
RAW RAWLINE/F
PARAMETERS :

RAWLINE is a valid client to server IRC protocol command line. See the IRC <
RFC,
or the section on the format of IRC commands.

RESULTS:

Sends RAWLINE to the server to be executed. RAW currently sets no return <
values.

EXAMPLE:
RAW 'PRIVMSG #amiga :Hello Folks!!!’/

RAW ’'MODE +oo-o :0pMe AndME DeopMe’
RAW " JOIN :famiga’

1.21 ARexx: MATCH command

COMMAND :
MATCH NICK/K ADDRESS/K STEM|VAR <variable>
PARAMETERS :

NICK Nick to look up in ChatBox’s internal ’FRIENDS’ list.

ADDRESS address associated with <nick>

if "STEM’ is specified, followed by a stem variable, MATCH will place the
results of it’s match attempt in that stem variable. If VAR’ is used then
ISMATCH and STATUS (see below) are concatenated into <variable>.

RESULTS:

stem.ISMATCH - 0 if no match, 1 if there was a match
stem.STATUS - string indicating status i.e.: +ckbo (chop, kick, ban, op <«
capable)

EXAMPLE:

address ’'ChatBox.1’
options results

WAIT stem irc.
MATCH irc.NICK irc.ADDRESS stem info.
if info.ISMATCH == 1 then
say 1irc.NICK| |’ is on the friends list with status of: ’||info.STATUS

else
say 1irc.NICK| |’ is not on the friends list.’

ChatBox 1.129 Alpha 18 /55

exit O

1.22 Command set for ChatBox

Special notes on on ChatBox’s command parser.
Channel operations:

/JOIN, /J
<channel>

/LEAVE, /L
[<channel>]

/PART
[<channel>]

/NAMES
[ON/OFF] | [<channel>, {<channel}]

/TOPIC
[<channel>] [<topic>]

Channel operator operations:

/MODE

[<nick>|<channel>] {[+/-]<modes>} [<limit>] [<user>] [<ban mask>]
/KICK

[<channel>] <user> [<comment>]|[$]
/OP

[<channel>] <user> [<user> [<user>]]

/DEOP
[<channel>] <user> [<user> [<user>]]

/BAN
[<channel>] <user> [<user> [<user>]]

/UNBAN
[<channel>] <user> [<user> [<user>]]

/VOICE
[<channel>] <user> [<user> [<user>]]

/UNVOICE
[<channel>] <user> [<user> [<user>]]

Messaging:

ChatBox 1.129 Alpha 19/55

/ME
<action>

/MSG, /M
<nick>|<channel>[, <nick>|<channel>[,...]] <message>

/NOTICE
<nick>|<channel> <message>

/PING
<nick>|<channel>

/CTCP
<nick>|<channel> <type> [<parameters>]

/QUERY
[<nick>|<channel>]

Server queries:

/ADMIN
[<server>]

/CONNECT
<target server> [<port> [<remote server>]]

/INFO
[<server>]

/KILL
<nick> <comment>

/LINKS
[[<remote server>] <server mask>]

/STATS
[<query> [<server>]]

/TIME
[<server>]

/TRACE
[<server>]

/VERSION
[<server>]

Information queries:

/LIST
[<pattern>] | [<channel_list>] [<server>]] [MIN <val>] [MAX <val>]

ChatBox 1.129 Alpha

20/55

/WHO
[<name> [<o0o>]]

/WHOIS

[<server>] <nickmask>[,<nickmask>[, ..

/WHOWAS

<nick> [<count> [<server>]]
Server operations:
/QUIT [<comment>]

/SERVER
[<server>]

/SIGN
[<comment>]

/SIGNOFF
[<comment>]
Personal operations:
/AWAY
[<comment>]

/INVITE
<nick> [<channel>]

/NICK
<nick>
ChatBox internals:
/ADD
<flags> <address> [<nick>]

/ALIAS

[<alias> [<command> [<parameters>]]]

/DCC
<type> <nick> [<parameters>]

/DESCRIBE
<nick> <action>

/ECHO
<text>

/ERRWIN

.11

ChatBox 1.129 Alpha 21/55

/EXEC
<script>

/FRIENDS
<ON/QFF>

/FREE
<ALIAS>|<FRIENDS>

/HELP
[<command>] [FULL]

/IGNORE
<user | #> <type | option> [<type> [...]]

/MSGWIN

/NOTIFY
[-1<nick> [[-1<nick> [...]]

/REM
<+ |address> [<nick>]

/NEWWIN

/STAT
<address> [<nick>] [<flags>]

/LOG
[<file>] [<channel>] [OPEN|CLOSE]

/LOAD
<cmdfile>

/ON
<type> <maskl> [<mask2>] </action> [<args>]

/RAW
<raw_irc_cmd>

/RAWWIN

/READ
[<textfile>]

/SEARCH
<string> [BEGIN|MIDDLE |CONTINUE]

/WAIT
<ON | OFF>

1.23 Special notes on ChatBox’s command parsetr.

ChatBox 1.129 Alpha

22/55

ChatBox’s command set is pretty complete, but we always find a command we’d
like to see added/supported that isn’t really practical to implement inside of
ChatBox’s internal code.

This is where ARexx, and the special features of ChatBox’s parser come into
play.

With ARexx, ChatBox’s command set is infinitely expandable. There are two
ways to access ARexx scripts. Via the /EXEC command, or via ChatBox’s ’special
case’ invocation. The /EXEC command is very straightforward, simply specify
the ARexx macro to run as an argument to /EXEC (as well as any arguments that
the script/macro itself may expect).

/EXEC kick.rexx SomeGuy

The above would execute the ARexx macro/script named "kick.rexx", which
accepts the argument "SomeGuy" as input.

You can also use /ALIASes to create ’super commands’, although this is
cumbersome in light of ChatBox’s ’special case’ invocations.

"Special Case’ invocations are cases where the command entered is not found

in ChatBox’s internal command set. In this case ChatBox will attempt to
execute the ARexx command of the same name, with the extension ".cb" appended
to it. For example, the /FIND command is not a ChatBox command, but can be

easily created via "Special Case" and ARexx. By typing /FIND, you essentially
tell ChatBox to try to execute "find.cb".

So, typing "/FIND ChatBox" would execute "find.cb ChatBox", or, in other
words, it executes the script "find.cb", with the argument "ChatBox".

1.24 Command: /READ

COMMAND :
/READ [<textfile>]
PARAMETERS:

<textfile> Textfile to /READ, must be ASCII, and less than 20k in size.
If no file is specified, an ASL File Requester will be opened.

FUNCTION:

For online reading of textfiles.

1.25 Command: /ON

COMMAND :

/ON <type> <maskl> [<mask2>] </action> [<args>]

ChatBox 1.129 Alpha 23/55

PARAMETERS:
<type> Type of /ON hook to install
<maskl> Pattern to match, varies with each <type>
<mask2> Secondary pattern to match, also varies with <type>

</action> ChatBox slash command, or ARexx script to execute upon activation
of this hook
<args> Any arguments that apply to </action>

FUNCTION:

Installs, or REMOVES an /ON hook. /ON hooks allow for trapping of certain
stream events (like public messages, private message, channel operations,
etc.) Upon receiving an event that matches the criteria of an /ON hook,
ChatBox will execute the </action> command with ChatBox’s command parser.

OTHER PARAMETERS:

If you type /ON with no parameters, you will get a list of all /ON hooks
that are currently installed. Indicated in the list are the /ON # (for
referencing), the ACTIVE or INACTIVE state, and the /ON hook type and
format.

REMOVE <on #>
<on #> 1s the # you’d like to delete from the /ON hook list
ACTIVATE ([<on #>] [<life>]

<on #> 1is the # you’d like to activate
[<life>] specifies the number of times to execute this hook, until it
deactivates itself. If [<life>] is omitted, the previous life
length is used (which may very well be 0). If life is set to
0, then it will never deactivate itself.

DEACTIVATE [<on #>]

<on #> 1is the # you’d like to deactivate

*x*NOTE : If the <on #> 1is omitted for ACTIVATE and DEACTIVATE, then the
last /ON entered is assumed. This is mainly useful in the
"Alias File’ for deactivating /ON hooks immediately after
creating them.

DEACTIVATEd /ON hooks are bypassed. If you install a hook with a <life>
parameter, it will only be executed that number of times before it
deactivates itself. Good for when you’d like an event to happen only a
limited number of times.

**x*NOTE: To set the <life> at /ON hook creation time, merely prepend the
life limit to the TYPE. i.e.:
/ON 2/PUBLIC % /msg $C this is a limited /ON, it will run 2 times

or...

/ON 2PUBLIC * /msg $C '/’ is an optional separator (see above)

ChatBox 1.129 Alpha 24 /55

NOTES:

Types of /ON hooks:

PUBLIC — Hook that responds to PUBLIC channel messages.
MSG — Hook that responds to PRIVATE messages

CTCP — Responds to CTCP events/commands

JOIN — Responds to JOIN events

LEAVE — Responds to channel PARTS

QUIT — Responds to signoffs/QUITs

NICKNAME - Responds to NICKNAME changes

KICK - Responds to KICK events

MODE — Responds to MODE changes

TOPIC — Responds to TOPIC changes

A response from the server must satisfy some criteria in an /ON hook before
it is activated. First, the TYPE must be matched. If it is, then <maskl>
is checked, and then <mask2> (if applicable). 1If all criteria are met,
then the </action> is executed. <maskl> applies to all TYPES of hooks,
whereas <mask2> may not need to be specified at all. It all depends on
what you wish to respond to. The various types, and what the masks mean to
them is specified below:

PUBLIC — <maskl> is to match the address of the user that sent the

MSG PUBLIC, MSG, or CTCP message. <mask2> is applied to the

CTCP actual text sent.

JOIN - <maskl> is applied to the address of the person joining the

LEAVE channel, <mask2> matches the channel name on which the join
occurred.

KICK — <maskl> is applied to the nick of the person being kicked,
<mask2> is applied to the channel name on which the kick
occurred.

TOPIC — <maskl> is applied to the address of the user that changed the
topic, and <mask2> is applied to the channel on which the topic
was changed.

QUIT - <maskl> is applied to the address of the user that quit,
<mask2> is ignored.

NICKNAME - <maskl> is applied to the address of the person that changed

their nick (their original nick can be extracted from this),
<mask2> is applied to the new nickname.

The </action> takes a form similar to ChatBox’s alias, supports the $x
variables. It also adds a new set of variables that apply only to PUBLIC,
MSG, CTCP, and TOPIC.

Variables that apply to the server command lines:

S0 - $9 are the respective tokens of the server command issued, but only
up to the ’"text to send’ portion (see notes below).
$0 is typically the nickname of the sender
$1 is the command name (raw irc server command)

ChatBox 1.129 Alpha

25/55

sC

SN

ST

SU

$2 is often the channel or recipient

is used to extract the channel, or recipient of this command (if
applicable)

is used to extract the Nickname of the user from which the server
command originated.

is used to extract the type of /ON hook that was activated (only
to the ARexx interface)

is used to extract the full address of the user from which the
server command originated

is used to extract the ’"rest of line’, starting from the highest
variable ($0 - $9) addressed (see notes below)

Variables that apply to the "text sent":

~0

{}

{x}
{-}

{x-vy}

{-v}

{x-}

are the respective words of the "text sent", useful for tokenizing

a line word by word (separated by spaces, see notes below)
20 is the CTCP type for a CTCP /ON

used to extract the ’"rest of line’, starting from the highest
variable (7”0 - "9) addressed (see notes below)

used to extract from "x’ to end. (i.e.: {4} = "4 {})
same as {}

used to extract from ’'x’ to 'y’.

used to extract from highest variable address previously (*0 - "9)

4

up to 'y
used to extract from "x’ to end. (same as {x})

Format of a Server Command:

:nick!user@host COMMAND argument [argumentl ...] :text to send

All normal server commands and replies are issued in this format,
varying based on the type of command/reply.

The tokens ($0 - $9 and []) apply to the portion BEFORE the second ’:’ in
the server reply. Here is a sample PUBLIC command:

:sascman! jweb@primenet.com PRIVMSG #Amiga :This text is seen on #Amiga

A

0 =N A= 1 =N A= 2= A= text to send -~

If a PUBLIC /ON hook was activated, and the </action> was specified as:

(1.

e.:

"/ON PUBLIC % /msg $C S$SU {I")

/msg SC SU {}

Then the parsed command would look like:

/msg #Amiga sascman!jweb@primenet.com This text is seen on #Amiga

ChatBox 1.129 Alpha 26/55

Which would send (to #Amiga) :

sascman! jweb@primenet.com This text is seen on #Amiga
NOTE: You will need the IRC-RFC to use the /ON command fully.
Standard UNIX pattern matching is used, case is ignored:

"x+" matches an arbitrary number of characters.
"?" matches exactly ONE character.

Variables for "text to send":

In the above server command example, the variables would return the
following:

~0 This

~1 text

~"2 is

~3 seen

~4 on

~5 #Amiga

But, if you specifed something like:

/action "1 {}

The {} would be replaced with tokens 72 through to the end of the line,
make the above ’/action’ parse out to:

/action text is seen on #Amiga

{} i1s all text after the highest token address (in this case "1)

EXAMPLES:
/ON PUBLIC * Q@find % /find ~1 {}
Whenever a user sends ’'@find’ to the channel, the /ON hook will be

activated, send a /find command to the parser. The *1 refers to the
second word ("0 is the first) of the 'text to send’.

1.26 Command: /RAWWIN

COMMAND: :

/RAWWIN

PARAMETERS :
None.

FUNCTION:

ChatBox 1.129 Alpha 27 /55

Sets a window to RAW mode, showing RAW server messages.
NOTES:
This function of ChatBox is only useful for those that may be developing

ARexx scripts. It shows what the server is sending, and may aid in
debugging scripts that rely on server communication command formats.

1.27 Command: /ECHO

COMMAND :
/ECHO <text>
PARAMETERS:
<text> Text to display locally in text window of active window.
FUNCTION:
Displays text locally.
EXAMPLES:
/ECHO This is a test of the /ECHO command.

Yields:
[Echo] | This is a test of the /ECHO command.

1.28 Command: /NOTIFY

COMMAND :
/NOTIFY [-]<nick> [[-]<nick> [...]]
PARAMETERS:
<nick> User you’d like a notify on (for signon/signoff) If ’'-’ precedes
the <nick> then <nick> is removed if it is on the list of
notifies.
FUNCTION:

Adds/Removes a notify. Notify uses ISON to detect when someone has joined
or left IRC.

EXAMPLES:
/notify SkyGuy Tau Fastlane Adds nicks to the notify list
/notify -SkyGuy -Fastlane Removes nicks from the notify list

NOTES:

ChatBox 1.129 Alpha

28/55

If ChatBox should fail to open the timer.device it will fall back to using
Intuition’s ’'Ticking’ system. The drawback to using Intuition is that the
window MUST be active for these ’'Ticks’ to be sent. So, if the window is
not active (at least ONE window) then /NOTIFY will not be polled...

Silent Use of /NOTIFY:

The /NOTIFY command uses the ISON server command to obtain it’s information.

This will result in seeing ISON replies from the server, if you wish to ignore

these messages, set the menu item in the Prefs menu "Show ISON" so that it does
not have a check mark next to it.

1.29 Command: /'SEARCH

COMMAND :
/SEARCH <string> [BEGIN|MIDDLE|CONTINUE]
PARAMETERS :

<string> A string of characters to be searched for in the channel

scrollback buffer. If multi-word strings are being searched
for, they should be enclosed in quotes.
BEGIN Search from BEGINning of buffer, if BEGIN is specified
MIDDLE Search from MIDDLE of buffer

CONTINUE Search from last position [default]
FUNCTION:

Searches channel scrollback buffers for a specified string

EXAMPLES:
/SEARCH "Hello World!" BEGIN - Searches for "Hello World!" starting
from beginning of buffer.
/SEARCH A4000 — Searches from last position

(CONTINUE) for the string "A4000"

1.30 Command: /IGNORE

COMMAND :

/IGNORE <user | #> <type | option> [<type> [...]]

PARAMETERS:
<user> If <user> is specified then the <types> must follow. This
is the usermask (pattern) to ’ignore’.
<#> If a <#> is specifed (as #1, #2, etc) then an <option> must

follow. This allows operations on a particular ignore.

ChatBox 1.129 Alpha

29/55

<option> An <option> is only valid when a <#> is given. Otherwise
option names are just ignored.
<type> Type of incoming msg/cmd to ignore from <user>

See Below for OPTIONS and TYPES

FUNCTION:

Adds/Removes/Alters an ignore in the ignore list.
OPTIONS and TYPES:

Current ignore types supported are:

PRV Ignore private messages from <user>

PUB Ignore public (to channel) messages from <user>
NOTP Ignore private notices from <user>
NOT Ignore public notices from <user>

CTCP 1Ignore CTCP’s from <user> (will not reply to PINGs, etc.)

Current options supported are:

SET Set new types for ignore #x
UNSET Unset types from ignore #x
REM Remove ignore #x

EXAMPLES:

/ignore SASC* PRV PUB (ignores Private and Public messages from any
user who’s NICK starts with SASC)

/ignore x.primenet.com PRV (ignores all private messages from any user whose

address ends in ".primenet.com")

<user> is the usual IRC type of address mask of the form: nick!user@host

/ignore (displays HELP for ignore, and lists all ignores
currently in memory)

/ignore #2 SET PUB (set ignore #2 to also ignore PUB messages)

/ignore #3 UNSET PRV (unsets PRV from ignore #3)

/ignore #0 REM (removes ignore #0)

1.31 Command: /DESCRIBE

COMMAND :

/DESCRIBE <nick> <action>

PARAMETERS :
<nick> This is the <nick> for the <action> to be sent to.
<action> The action to ’'perform’

FUNCTION:

ChatBox 1.129 Alpha 30/55

Sends an action message (similar to /ME, only it is privately sent)

1.32 Command: /RAW

COMMAND :
/RAW <raw_irc_cmd>
PARAMETERS:
<raw_irc_cmd> a VALID command line to send to current server.
FUNCTION:

Sends <raw_irc_cmd> to the server. See the IRC RFC for more information.
RAW IRC commands are beyond the scope of this document.

1.33 Command: /WAIT

COMMAND :
/WAIT ON|OFF
PARAMETERS :
ON | OFF
FUNCTION:

To activate/deactivate the ARexx WAIT queue. If /WAIT is ON, then lines
received are queued (up to 256). If "/WAIT ON" is again executed while
line queueing is already ON, the ’'buffer’ is flushed of all pending lines.
If a "/WAIT OFF" is executed then line queueing is deactivated, and the
"buffer is flushed.

NOTES:

This command has NO value except to those using ARexx and ChatBox’s WAIT
command inside of an ARexx script. It is meant for consistant flow
control.

It is recommended that you issue a "/WAIT ON" command at the beginning of
every ARexx script that has a WAIT loop (i.e. a BOT).

Definitely issue a "/WAIT OFF" command before exiting ANY script that uses
the WAIT command. No harm is done if this step is forgotten... However,
if line gqueueing is not turned off between the execution of scripts,
unpredictable results can be expected from the WAIT command, as the queue
buffer must be emptied of all pending stored lines (and only 256 can be
stored) .

ChatBox 1.129 Alpha 31/55

Leaving the /WAIT in the ON "position" with no script running, merely
wastes valuable CPU and Memory resources.

Example:

/+ sample WAIT loop =/

HOST = address() /x get the calling host name =/
address value HOST

CMD ' /wait on’ /+ turn the LINE queue on */

irc.CMD = ’NONE’

do while irc.CMD != ' /endrexx’
say ’'Command for this line: ’ || irc.CMD
say ’‘Channel for this line: ’ || irc.CHANNEL
say 'Message for this line: ’ || irc.LINE

end
CMD ' /wait off’ /+ turn the LINE queue off «/

exit O

1.34 Command: /KICK

COMMAND :
/KICK [<channel>] <user> [<comment>] | [$]
PARAMETERS:
<channel> You must be on <channel> to kick, if <channel> is not
specified, then the kick is automatically sent to the

current channel.

<user> This must be specified, and the <user> must be on the
<channel> that the KICK is being sent to.

<comment> Not required, but recommended.

S If a '$’ is specified instead of comment, ChatBox will select a
random kick message from ’‘cb.kick’ if it is present.

FUNCTION:
KICK’s <user> off of <channel>

NOTES:

ChatBox 1.129 Alpha 32/55

You must have ’+o’ status on the channel to KICK.

1.35 Command: /KILL

COMMAND :

/KILL <nick> <comment>

PARAMETERS:
<nick> Nick of the user to KILL off of IRC (forced QUIT)
<comment> Required comment clarifying the reason

FUNCTION:
KILL’s <nick> from server, causing a forced QUIT

NOTES:

You must be an IRCop to use the KILL command.

1.36 Command: /TOPIC

COMMAND :
/TOPIC [<channel>] [<topic>]
PARAMETERS:

<channel> Channel to change the topic on, if not specified then the
command is sent to the current channel

<topic> The new topic string
FUNCTION:

Changes the topic on <channel> to <topic>
NOTES:

If the channel mode is set to ’'+t’ (topic protection) then you must have
channel operator status (+o0) to change the topic.

1.37 Command: /TIME

COMMAND :

/TIME [<server>]

ChatBox 1.129 Alpha 33/55

PARAMETERS :

<server> If not specified, the TIME command is sent to the current
server.

FUNCTION:

Returns the current time on <server>

1.38 Command: /TRACE

COMMAND :
/TRACE [<server>]
PARAMETERS:
<server> server to trace the route to
FUNCTION:

TRACE 1is used to find the route to <server>

1.39 Command: /SERVER

COMMAND :
/SERVER [<server>]
PARAMETERS:

<server> server to connect to, if not specified the current server
name is returned.

FUNCTION:

To connect to a server. Upon reconnect, all active channels are rejoined.

1.40 Commands: /SIGNOFF, /SIGN, /QUIT

COMMAND :

/SIGNOFF [<comment>]
/QUIT [<comment>]

PARAMETERS:
<comment> An optional comment, if not specified then "Leaving." is used.

FUNCTION:

ChatBox 1.129 Alpha

34 /55

To QUIT IRC, and to quit ChatBox.

1.41 Command: /STATS

COMMAND :
/STATS [<query> [<server>]]
PARAMETERS:
<query> type of "c,h,i,k,1l,m,o0,y,u"
<server> server to get STATS on
FUNCTION:

To obtain information about a server about <query> See the IRC RFC
for more information on STATS

1.42 Command: /WHO

COMMAND :

/WHO [<name> [<o>]] [FULL]

PARAMETERS:
<name> A nickname, user address, channel or pattern to query
<o> If specified then only IRCops are listed.

FUNCTION:

Generates a query which returns a list of information matching the
<name> pattern. Wildcards are permitted.

If FULL is specified, then the full whois information is displayed,
otherwise just the channel, status, and address are displayed.

1.43 Command: /WHOIS

COMMAND :
/WHOIS [<server>] <nickmask>[,<nickmask>[,...]]
PARAMETERS:

<server> if specified, checks only <server>

ChatBox 1.129 Alpha 35/55

<nickmask> a wildcard to match, or a known nickname
FUNCTION:

Returns info about <nickmask>

1.44 Command: /WHOWAS

COMMAND :
/WHOWAS <nick> [<count> [<server>]]
PARAMETERS :

<nick> a <nick> that no longer exists (because of a QUIT or NICK
change)

<count> 1if specified, then only <count> replies will be returned
if not specified, then all replies are sent.

<server> server to query
FUNCTION:

Returns info about a <nick> that no longer exists.

1.45 Command: /JOIN

COMMAND :
/JOIN <channel>
PARAMETERS:
<channel> name of channel to join
FUNCTION:

To JOIN a channel. 1If the channel does not exist then you are given
operator status on the newly created channel.

1.46 Command: /PING

COMMAND :
/PING <nick>|<channel>
PARAMETERS:

<nick> a nick to PING

ChatBox 1.129 Alpha

36/55

<channel> a channel to ping. All users on <channel> will be sent a
PING to reply to.

FUNCTION:

Sends a CTCP of type PING to <nick> or <channel>.

1.47 Commands: /LEAVE, /L, /PART

COMMAND :

/LEAVE [<channel>]
/L [<channel>]
/PART [<channel>]

PARAMETERS :

<channel> channel to leave, if not specified the current channel is
left

FUNCTION:

To exit from <channel>

1.48 Command: /LIST

COMMAND :
/LIST [<pattern>] | [<channel>{,<channel>}] [<server>] [MAX <max>] [MIN <min>]
PARAMETERS:

<pattern> list channels matching <pattern>

<channel> channel to list

<server> server to query

MAX <max> list only channels that have less than or equal to ’'max’ number of

people
MIN <min> list only channels that have more than or equal to 'min’ number of
people
FUNCTION:
Lists channels and their topics. If <pattern> is specified then only

channels that match the pattern and that are not secret or private (+s or

+p) are listed.

ChatBox 1.129 Alpha

37/55

1.49 Command: /LINKS

COMMAND :
/LINKS [[<remote server>] <server masg>]
PARAMETERS :

See IRC RFC for more information.

1.50 Command: /NICK

COMMAND :
/NICK <nick>
PARAMETERS:
<nick> New nickname.
FUNCTION:

Change current nickname to <nick>

1.51 Command: /NOTICE

COMMAND :
/NOTICE <nick>|<channel> <message>
PARAMETERS:
<nick>|<channel> the nick or channel to send <message> to.
FUNCTION:

Sends a notice (similar to a /msg) to <nick>, or <channel>

1.52 Command: /NAMES

COMMAND :
/NAMES [ON/OFF] | [<channel>{,<channel>}]
PARAMETERS:
ON/OFF to turn the names list ON or OFF. The names list splits the

current window on the right hand side. It sports a scroll gadget,
and two arrows. *xx SEE NOTE BELOW xx*x*

ChatBox 1.129 Alpha

38/55

<channel> to get the members names from.

FUNCTION:

Lists the names for <channel>. Assuming you are a> on the channel, or
b> off the channel AND the +p/+s mode is not set.

NOTES:

* kK

The names list can be used to supply nicks/names for commands that require a
nick/name as input. If a double-click is made on a nick/name, a /WHOIS will
be issued. /KICK also works, but only with the first name selected so as to
avoid mass kick abuse that is certain to occur.

NOTE %% THIS IS IMPORTANT!!!

I keep getting ’"bug reports’ about how ChatBox does NOT sort the names list
correctly. I assure you, and I reassure you, and I stress, and I point out
that I want to make it so VERY completely and utterly unmistakeably CLEAR
that this is NOT a bug... I repeat, it is NOT A BUG. I don’t CARE if one
thinks it IS a bug because it ’appears’ to become ’'unsorted’. Here is the
VERY BOTTOM LINE on ChatBox’s sorting method, so READ IT, UNDERSTAND IT,
and DON’T REPORT "BUGS" ABOUT IT!!!

Here is how it works, and how it will ALWAYS work, if it BUGS you SO00O0
much that it works this way, use GV, it’s a VERY nice client, I hear.

ChatBox SORTS the names upon YOUR entry into a channel, it also sorts NEW
joins (when OTHER people Jjoin the channel). It DOES NOT take goofy lead

characters into consideration (like "_", "[", etc.) It DOES NOT sort on

nick changes, nor will it EVER (get that? EVER!!!)

SO, in conclusion, IF the names APPEAR to be out of sort, THEY ARE, and it
is probably due to a NICK CHANGE. OR, the person has a ’"goofy’ lead
character in their nick.

MY reasons (which are reasons enough): In EARLY development of ChatBox I
was sitting quietly on #Amiga, minding my own business, when suddenly about
4 idiots joined the channel (1 idiot, with 4 crapbots, actually), they
began NICK flooding. NEEDLESS TO SAY, this created a TREMENDOUS load on
the CPU, and on ChatBox. I couldn’t kick this person, I could do nothing
but watch while everything on my machine slowed to a crawl. Why did the
CPU get so loaded down? Well, let’s see, could it have been the SORT
ROUTINES??? 1Indeed, it was, hence, the nick change sorting WAS REMOVED,

it IS NOT A BUG!

Done. Sorry for the flame, but the very same people are ’'reminding’ me of
this bug every time they run across me, or remember I have an E-Mail
address. I guess I wasn’t being clear enough. The above should pretty much

set things straight.

1.53 Command: /ME

COMMAND :

/ME

<action>

ChatBox 1.129 Alpha 39/55

PARAMETERS:
<action> a personal action. i.e., if your nick is ChatBox and you entered:
" /me washes behind his ears.’
You’d see: (and so would all others on the channel)
—<ACTION>- ChatBox washes behind his ears.
FUNCTION:

For creative expression... A toy. A way to talk in the third person...

1.54 DCC.CHAT.AS225

SPECIAL NOTES ON DCC.CHAT.AS225

The DCC.CHAT executable included with ChatBox is NOT compatible with any
other IRC Client. It was written with ChatBox, specifically, in mind.

One important feature of IRC is the ability to secure a CHAT transaction
with any party connected to IRC. In designing ChatBox it was decided that
having a separate ’'DCC CHAT’ window that used some other GUI was not

acceptable.

DCC Chat uses ChatBox’s GUI system. So, it will feel as though you are
still using ChatBox IRC.

The design goal was met. Simplicity was the goal.

The advantage of having text send to a ChatBox window is clear. Why have
a different type of GUI to have to get used to?

Osma "Tau" Ahvenlampi should be given GREAT credit for his contribution of
DCC.CHAT.AS225 to the Amiga IRC community. It is an extraordinary alternative.

ChatBox’s DCC.CHAT is based on his code. He offered the framework, and is
given credit for designing the connection code (of which I know little about).

However, if you prefer having a separate, and distinct DCC client, then by
all means you should use Tau’s original version of DCC.CHAT.AS225.

1.55 Command: /MSG

COMMAND :
/MSG <nick>|<channel>[,<nick>|<channel>[,...]] <message>
PARAMETERS:
<nick>|<channel>| [<,><.>] are the recipient(s) of <message>

FUNCTION:

ChatBox 1.129 Alpha

40/55

To send a message to a user or channel.
NOTE: If an "=’ is placed before the <nick>, then ChatBox sends the text to
the appropriate DCC Chat session. 1.e.: /msg =SkyGuy <message> would

send <message> to SkyGuy over a DCC Chat connection (see section on

DCC.CHAT.AS225

for more information. Also, if a ’,’
is placed in the <nick> position, then the last person to send you a
message is replied to. If a ’'.’ is placed there, then the last person

you sent a message to is sent the current message.

1.56 Command: /MODE

COMMAND :
/MODE [<nick>|<channel>] {[+/-]<modes>} [<limit>] [<user>] [<ban mask>]
PARAMETERS :

<nick> Personal <nick> for user mode changes (i,o,w, etc)

<channel> for channel modes, or o,b,v, etc.

[+/-] + sets a flag ON, - sets it OFF

<modes> mode characters (i.e. i,0,b,v,t,n,s,p,1l, etc.)

<limit> for mode +1 (limit users), an ASCII number setting the limit of

users on <channel>
<user> for modes: o,b,v

<ban mask> ban address with wildcards for +/-b mode
FUNCTION:

To change personal user modes, or channel modes. Or to op/voice,
deop/unvoice other users on a channel where you have ops.

NOTES:

See the IRC-RFC for a full description of the modes, and their usage.

1.57 Command: /INVITE

COMMAND :
/INVITE <nick> [<channel>]
PARAMETERS:

<nick> The user to invite

<channel> the channel to invite them to. You do not have to be on <channel>

to invite a user there. TIf <channel> is not specified, then the
current channel is assumed.

ChatBox 1.129 Alpha 41/55

FUNCTION:

To send an invitation to another user to indicate you’d like them to join
<channel>

1.58 Command: /INFO

COMMAND :
/INFO [<server>]
PARAMETERS :

<server> server to query information from, if not specified then current
server joined is assumed.

FUNCTION:
To obtain further information on <server>.
NOTES:

See the IRC-RFC for more info on this command.

1.59 Command: /AWAY

COMMAND :

/AWAY [<comment>]

PARAMETERS:
<comment> message to appear when you are marked away. If not specified then
the 'away’ tag will be removed.
FUNCTION:

To notify others that you are away from keyboard (AFK) or not watching, etc.

1.60 Command: /ADMIN

COMMAND :
/ADMIN [<server>]
PARAMETERS:

<server> server to query information about it’s administrat[ion]/[or]

ChatBox 1.129 Alpha 42 /55

FUNCTION:

To obtain more information on about a server’s adminitration

1.61 Command: /ALIAS

COMMAND :
/ALIAS [<alias> [<command> [<parameters>]]]
PARAMETERS:
<alias> the name to give this alias
<command> the actual ChatBox command you’d like executed

<parameters> the parameters appropriate for <command>

If none of the parameters are specified, then all current aliases are
listed.

FUNCTION:

To supply shortcut aliases to a ChatBox IRC session.

EXAMPLES:

Example 1: /ALIAS bye quit I’'m OUTTA here!

Example 2: /ALIAS test msg $C Useless Alias being tested.
Example 3: /ALIAS umode mode S$N

Example 4: /ALIAS chop add +c *!x$1 $0

Example 5: /ALIAS chg stat = $0 $1

For Example 1, if ’/bye’ was typed it would be the same as typing:
/QUIT I'm OUTTA here!
For Example 2, if you were currently on #amiga, and typed ’/test’ it would be
the same as entering:
" /msg #amiga Useless Alias being tested’
#amiga is substituted for $C
For Example 3, if your nick were ’ChatBox’, and you typed ’/umode +i’, it would
be the same as entering:
’ /mode ChatBox +i’ ChatBox 1is substituted for $N
For Example 4, if the following was entered:
" /chop SASCMan Jjweb@x.phx.primenet.com’
this would be the ’real’ command:
/add +c *!*jweb@+*.phx.primenet.com SASCMan’
For Example 5, if the following were entered:
’/chg SASCMan +ckb’
the actual command issued would be:
"/stat * SASCMan +ckb’

$0-$9 are parsed as follows:

$0 $1 $2 $3 $4 $9
/cmdname arg0 argl arg2 arg3 argd4 ... arg9

NOTES:

ChatBox 1.129 Alpha

43 /55

SN Substitution variable for current nickname

$C - Substitution variable for current channel

$0-%9 Substitution variables for arguments in command entered

[] — Substitute the rest of line. This should always be specifed
if an alias has any parameters. If $0-$9 are used, then the
rest of line is all arguments after the highest ’$’ token
used. i.e.: if $3 was the highest used, then ’'[]’ consists
of all arguments from $4 to the last argument.

An Alias file is automatically loaded at startup if it exists as
"S:ircrc.als". If the file does not exist as such, you can use

/LOAD alias.filename

SEE ALSO:

Format for Alias file (ircrc.als)

/LOAD

1.62 Command: /VERSION

COMMAND :
/VERSION [<server>]
PARAMETERS:
<server> server to query version information from
FUNCTION:

To obtain version info on <server>

1.63 Command: /VOICE

COMMAND :

/VOICE [<channel>] <user> [<user> [<user>]]
/UNVOICE [<channel>] <user> [<user> [<user>]]

PARAMETERS :

<channel> Channel to send /VOICE or /UNVOICE change to
<user> user to give/remove +v (VOICE) status to.

FUNCTION:

ChatBox 1.129 Alpha

44 /55

To give/remove voice status to/from <user>’'s. Allows/disallows users on a

moderated channel (/mode +m) to speak. Users without +v (voice) cannot
send text to the channel, if +m 1is set.

1.64 Command: /CONNECT

COMMAND :
/CONNECT <target server> [<port> [<remote server>]]
PARAMETERS:
<target server> server to CONNECT to
<port> port on <target server> to use
<remote server> server to CONNECT to <target server>

FUNCTION:

To (re)establish a connection between servers. If <remote server> is
specified, then an attempt is made to connect it to <target server>.

NOTES:

See IRC-RFC for more information on CONNECT. It is a restricted command,
availble only to IRC operators.

1.65 Command: /CTCP

COMMAND :
/CTCP <nick>|<channel> <type> [<parameters>]
PARAMETERS:
<nick>|<channel> recipient of the CTCP msg
<type> type of CTCP (i.e. PING, VERSION, CLIENTINFO, PID, etc.)

<parameters> parameters specific to <type>

FUNCTION:

To send query type msgs to <nick>|<channel>. Responses usually provide more

info, or access to functions available via <nick>.

1.66 Commands: /OP, /DEOP

COMMANDS :

/OP [<channel>] <user> [<user> [<user>]]
/DEOP [<channel>] <user> [<user> [<user>]]

ChatBox 1.129 Alpha 45/55

PARAMETERS :
<channel> if specified, then the mode change is sent to <channel>, otherwise
current channel is assumed
<user> user to give/remove channel operator status to/from

FUNCTION:

Gives/removes user +/-o (ops/deop) on <channel>.
Same as /mode <channel> +/-o0 <user>.

1.67 Commands: /BAN, /UNBAN

COMMAND :

/BAN [<channel>] <user> [<user> [<user>]]
/UNBAN [<channel>] <user> [<user> [<user>]]

PARAMETERS:
<channel> if specified, then the mode change is sent to <channel>, otherwise
current channel is assumed
<user> user to set/remove ban on/from

FUNCTION:

Sets/removes user +/-b (ban) on <channel>.
Same as /mode <channel> +/-b <user>.

NOTES:

ChatBox maintains an internal banlist, if a 'mode #channel +b’ is requested
(a banlist request). To view the internal banlist:

/ban $list
To remove a ban from the list:
/ban $rem #

Where the '#’ is not the pound sign, but the number of the ban you’d like
to remove.

See also: /FRIENDS ON for information on a special function of /ban and
/unban

1.68 Command: /HELP

COMMAND :

/HELP [<command>] [FULL]

ChatBox 1.129 Alpha 46 /55

PARAMETERS :

<command> command to get /HELP on, if not specified, then all commands are
listed.

FUNCTION
To provide template help on <command>. If FULL is specified, then the full

help text will be displayed from ChatBox.guide, if the .guide is in the
current directory.

1.69 Command: /EXEC

COMMAND :
/EXEC <arexxscript>
PARAMETERS:
<arexxscript> an ARexx script/macro to invoke.
FUNCTION
To start an ARexx script.

See the section on
ChatBox’s ARexx Port

1.70 Command: /QUERY

COMMAND :

/QUERY [<nick>|<channel>]

PARAMETERS:
<nick>|<channel> Recipient of the query. Causes all undirected input to be
sent to <nick> or <channel>. TIf not specified, then the
/QUERY 1is cleared for that window.
FUNCTION:

To allow a private/public conversation with <nick>/<channel> respectively
without having to type /msg <nick>|<channel> each time.

NOTE: 1If an ’'=’ 1is placed before <nick>, then the query will be on the

specified DCC Chat session specified by <nick>. See the section on
"DCC.CHAT.AS225" for more information.

1.71 Command: /NEWWIN

ChatBox 1.129 Alpha 47 /55

COMMAND: :
/NEWWIN
PARAMETERS :
None.
FUNCTION:

To open a new ChatBox channel window, without joining a channel. To use as
a query/msg/crap window, for example.

1.72 Command: /MSGWIN

COMMAND :
/MSGWIN
PARAMETERS :
None.
FUNCTION:

To direct private messages/notifications to window in which /MSGWIN was
executed.

1.73 Command: /ERRWIN

COMMAND :
/ERRWIN
PARAMETERS:
None.
FUNCTION:

To direct error messages/notifications to window in which /ERRWIN was
executed.

1.74 Command: /ADD

COMMAND :

/ADD <flags> <address> [<nick>]

ChatBox 1.129 Alpha

48 /55

PARAMETERS:
<flags> flags to set/unset (+/-) or ALL (see NOTES below)
<address> address of the ’'friend’, wildcards are permitted. (standard IRC
address format)
<nick> if specified allows easier access to the /FRIENDS list
FUNCTION:

To 'add’ a friend to the ’/FRIENDS’ list. Giving them access to certain
ChatBox features in the friends architecture.

NOTES:
Flags and there uses:

c - CHOPS, or channel operator status on /FRIENDS list. With this
flag set on a friend, they will be auto-opped when they join a
channel with /FRIENDS ON

k - [KICK, or KICK status. With this flag set on a friend they can
use ChatBox’s kick to remove a user from the current channel (bot
like function)

b - BAN, or ban status. With this flag set on a friend they can use
ChatBox’s smart ban facilities (see notes on bans below)

o - OPS, or op status, with this flag set this user can give OPs to
other users that are on the friends list. But will not allow

OP’ing non-friends (good for when no ops are live, and more ops
are needed. for example, when the chatbox session is started with
no ops in channel, and no one is paying attention except for a
user who has +o on his friend status.)

a - ADD, or add status. With this flag set this user can /ADD more
friends to the ChatBox list (remotely)

r - REMOVE, or remove status. With this flag set for a friend, they
can remove a user from the ChatBox friends list (remotely)

1 - LIST, or list status. Allows a friend with this flag set to list

out the current friends list (this requires MEGA bandwidth, and
usually results in FLOOD kills when friends lists are large)

s — STAT, with this flag set a user can query ChatBox for info on a
friend (to modify)

FRIENDS COMMANDS:

schop - no parameters

$kick <nick> <comment> - same as /kick, except no channel
is specified

%ban <nick>|<ban mask> - same as /ban

%$op <nick> - same as /op

%$add <flags> <address> <nick> - same as /add

$remove <x>|<address> <*>|<nick> - same as /remove

$list - no parameters

%$stat <*>|<address> <*>|<nick> <flags> - same as /stat

EXAMPLE:

/ADD +ckbo *!jweb@+primenet.com SASCMan
The above adds SASCMan (Jjweb@primenet.com) to the friends list (this is not
saved to disk) with flags of +ckbo

ChatBox 1.129 Alpha

49 /55

/ADD ALL =x!ding@x.silly.world.com SillyMan
The above adds SillyMan to the friends list with ALL flags set

SEE ALSO:

/FRIENDS, /STAT, /REM, /FREE

1.75 Command: /REM

COMMAND :
/REM <x>|<address> <*>|<nick>
PARAMETERS:

<address> address specification of friend to remove

<nick> irc name of friend to remove.
<H> place holder. TIf address is not specified, a ’*’ should be used
as a place holder. (note, do not edit ARexx scripts to conform

to this, as it will most certainly change as soon as I devise a
more intuitive way of handling this)

FUNCTION:

Removes a friend from the current, in memory, friends list. Does not remove
it from the friends file

EXAMPLE:
/REM #7?!jweb@#7?.phx.primenet.com - removes address (friend) from current
list in memory
/REM x SASCMan - removes SASCMan from the current list

1.76 Command: /STAT

COMMAND :
/STAT <+*>|<address> [<nick>] [<flags>]
PARAMETERS:
<address> address of friend to get info on or change status of

<nick> nick of friend, if <address> is not used (with "%’ as a place holder)

<flags> new flags to set/unset for friend specified.
<x) a place holder for <address> in case <nick> is used to find the friend.
IF no parameters are given, then the current friends list will be output to

the window.
FUNCTION:

To list/change/query info/status of a friend.

ChatBox 1.129 Alpha 50/55

EXAMPLE:

/STAT *» SASCMan — Shows current status info on
SASCMan

/STAT #7?!root@#?.slip.uiuc.edu - Lists current status info on
specified address

/STAT #7?!silly@#?.corny.edu +c-k - Sets status to +c, -k for address
specified

/STAT » SASCMan +ck-b-o - Sets status +c, +k, -b, -o for
SASCMan

/STAT - Lists out current Friends list.

1.77 Command: /FRIENDS

COMMAND :

/FRIENDS <ON/OFF/WHO>

PARAMETERS :

<ON/OFF/WHO> to activate or deactivate the friends list for the window in
which ON/OFF was specified

FUNCTION:

To make a friends list active or non-active.

NOTES:

SEE

If '"WHO’ is specified, the friends list is left OFF, but the WHO list
is loaded so that smart banning can be used.

When a friends list is turned ’'ON’ a /WHO #channel is done to grab the
address of all users currently on the channel, so there may be a slight
delay and then an "End of WHO" message. With /FRIENDS ON, a special
ChatBox feature is enabled (regardless of whether the list actually

has any ’friends’ in it or not). /BAN becomes ’smart’. For example:

A user is DorkMan (~dork@slip34.ding.dong.com).

And ’ /ban DorkMan’ is entered... ChatBox will set the ban as follows:
/mode #channel +b *!xdork@+.ding.dong.com

ALSO:

/ADD, /REM, /STAT, /FREE,

Format for FRIENDS files

1.78 Command: /FREE

ChatBox 1.129 Alpha

51/55

COMMAND :
/FREE ALIAS|FRIENDS
PARAMETERS:
ALIAS the keyword ALIAS when used (ie: /free ALIAS) free’s the alias list
from memory
FRIENDS the keyword FRIENDS when used (ie: /free FRIENDS) free’s the friends
list from memory

FUNCTION:

To free up memory resources by eliminating /ALIAS and /FRIENDS lists.

1.79 Command: /LOG

COMMAND :

/LOG [<file>] [<channel>] [CLOSE|OPEN]

PARAMETERS:
<file> file to create to keep logs (if not specified, <channel> name
is used as file name)
<channel> channel to creat log file for (if not specified, current

channel is assumed)
[CLOSE |OPEN] Keyword to OPEN or CLOSE the file for <channel>

FUNCTION:

To create a log file for <channel> or the current channel.

1.80 Example /FRIENDS file

The format for a /FRIENDS file is VERY simple. All lines beginning with a
command starter are executed by ChatBox’s interpreter. An example file:

Comment line

or another way for a comment line

! or another

/add +ckbo #?!silly@#?.willy.wong.edu DingDong
/add +c #?!jweb@#?.phx.primenet.com SASCMan
/add ALL #?!root@#?.this.that.com Lost

#another comment

/add +ck #?!joeQ#?.blo.com JoeBlo

ChatBox 1.129 Alpha 52 /55

Any questions?

Save this file anywhere, and load it with:
/FRIENDS PATH:<friends.file>

Don’t forget to activate the friends list with:

/FRIENDS ON

1.81 Example /ALIAS file

The format for an /ALIAS file is VERY simple. All lines beginning with a
command starter are executed by ChatBox’s interpreter. An example file:

Comment line

or another way for a comment line
! or another

/alias banlist mode $0 +b

/alias chop add +c *!*x$1 $O

/alias tops add ALL =!*$1 $0

/alias umode mode SN []

/alias pme describe $0 []

fanother comment

/alias vers ctcp $0 VERSION
/alias finger ctcp $0 FINGER
/alias send dcc send $0 $1
/alias move dcc move $0 $1
/alias chat dcc chat $0
/alias dmsg =S0 []

/alias dclose dcc $0 CLOSE

Ez nuff?

NOTE: Only /ALIAS commands will be parsed.

1.82 Command: /LOAD

COMMAND :
/LOAD <cmdfile>
PARAMETERS :

<cmdfile> a file consisting of ChatBox command lines (i.e.: alias file,

ChatBox 1.129 Alpha

53 /55

"friends’ file)
FUNCTION:

To load and execute a ChatBox command file.

NOTES:

Not all commands can be issued in a command file. Currently, only
the following commands are available:

/ADD

/ALIAS

/AWAY

/BAN /UNBAN
/FRIENDS

/JOIN

/MODE

/NICK

/OP /DEOP
/VOICE /UNVOICE
/NEWWIN

1.83 Command: /DCC

COMMAND :

/DCC <type> <nick> [<parameters>]

PARAMETERS:
<type> CHAT/SEND/MOVE, currently none of these are built in and
require DCC.send and DCC.chat to be installed in DCC:
<nick> recipient of DCC

<parameters> filename for SEND/MOVE

FUNCTION:

To establish a direct socket connection with <nick> for a more secure
transaction.

SPECIAL NOTES:

DCC Chat has now been ’'personalized’ for ChatBox. The version included with
ChatBox (DCC.CHAT.AS225) will only work with ChatBox. Do not try to use it
with other IRC clients, it is futile. ;)

ChatBox’s DCC system behaves in a fashion similar to IrcII. When you wish
to "send’ text to a connected party you prepend his/her nickname with ’='
to tell ChatBox that this message is intended for the recipient via a DCC
Chat connection.

The recommended method is to open a clear window with /NEWWIN, and use
"/QUERY =nick" to carry on the transaction. However, you may use ChatBox’s
/ALIAS system, or more simply use "/MSG =nick <message>".

ChatBox 1.129 Alpha 54 /55

Example /ALIAS for using DCC:
/ALIAS DMSG MSG =$0 []

With the above alias you can type: /dmsg SkyD00d Hey!
And the text will be sent to =SkyD00d.

To close a DCC Chat session: /DCC <nick> CLOSE

1.84 The Future of ChatBox

Features on ChatBox will be improving, and new ones will be added. Currently,
I'm working on the following:

Completed Preferences Facility

More Menu Items (thus, keyboard shortcuts)

New DCC clients

Debug output window (displaying RAW server communications)

8SVX Beeping

External player beeping

Banlist editing via GUI facility

Server list maintenance (via preferences and ’'on-the-fly’ popup)
Online Help/FAQ system for CB commands and ARexx...

WHOIS popup GUI facility (for GUI based kicking, banning, etc.)

Planned Features:

Multi-Threaded support (via a separate Socket Task)

Iconization

More communication between CB and other tasks (a public MsgPort)
Visual communications (via a Graphic versus just a ’'nick’)

1.85 ChatBox’s Author

My name is Jeff Webster, known as SASCMan on IRC.

I am a 26 year old software developer living in Phoenix, AZ. I develop
software exclusively for the Amiga line of computers. My specialty is
Operations Development. I have designed two major operating systems
using the Amiga. My first large project was ProvVU-OS. ProVU is an OS
that allows individuals in reconstruction to customize and expand the
underlying previewing system. ProVU is mainly used by cosmetic surgeons,
interior decorators/designers, and reconstructive modelers to allow their
clients/patients to view the changes to be made, before they are actually
made. ProVU is under constant development, always being improved.

My other project is Ami-POS. Yes, Point Of Sale on the Amiga. With Ami-POS

we broke new ground with Amiga networking hardware and software, and were

able to set up elaborate LAN (Local Area Networks) for small retailers (mostly
book and software houses). Ami-POS is currently a complete project, undergoing
bug fixes only.

ChatBox 1.129 Alpha 55/55

JDW Developments, my company, is moving forward to developling software for
the general public and moving away from private business. The Internet has
opened up a whole new world of opportunities.

My company consists of 7 Developers, including myself. Two of my developers
are hardware specialists as well as being well versed in applications

development. I do not have permission to mention their names here, so I
will mention only first names: Drake, Jared, Gary, Stephen, Nicole, and
Diane.

Drake is my hardware specialist, he designs network protocols as well as the
hardware to communicate on.

Jared is my UNIX/LINUX specialist, he designs multi-user security systems as
well as contributing to our network literacy.

Gary is my hacker, he can take any piece of hardware, and modify it to work
safely on an Amiga. He has a degree in computer science, and is my partner
from day one.

Stephen is my newest partner. He is a specialist in HTML, VRML and studying
to be versed in Java. He is our parser developer (he designed the concept
for ChatBox’s new parser)

Nicole is my team leader, she develops support routines, specializing in GUI
and visual interface construction and communication.

Diane is my style—-guide compliant QUEEN. She makes sure that everything has
the right ’feel’ to it. She designs ALL of JDW Developments GUI’s.

Please note that ChatBox is a solo effort, with the exception of a few
suggestions and small enhancements here and there (i.e. Stephen’s line parser)

	ChatBox 1.129 Alpha
	ChatBox - The new world of IRC
	Distribution
	Overview - Copyright, implementation, goals
	Acknowledgements, and thanks
	Requirements, and setup
	ChatBox's Preferences File
	ChatBox's preferences facility
	ChatBox's Random kick message file
	ChatBox's Menu Items
	ChatBox's ARexx Port
	ARexx: LOCAL command
	ARexx: NICKONCH command
	ARexx: FINDNICK command
	ARexx: ISOP command
	ARexx: PATTERN command
	ARexx: NAMES command
	Formats for common IRC commands
	ARexx: WAIT command
	ARexx: CMD command
	ARexx: RAW command
	ARexx: MATCH command
	Command set for ChatBox
	Special notes on ChatBox's command parser.
	Command: /READ
	Command: /ON
	Command: /RAWWIN
	Command: /ECHO
	Command: /NOTIFY
	Command: /SEARCH
	Command: /IGNORE
	Command: /DESCRIBE
	Command: /RAW
	Command: /WAIT
	Command: /KICK
	Command: /KILL
	Command: /TOPIC
	Command: /TIME
	Command: /TRACE
	Command: /SERVER
	Commands: /SIGNOFF, /SIGN, /QUIT
	Command: /STATS
	Command: /WHO
	Command: /WHOIS
	Command: /WHOWAS
	Command: /JOIN
	Command: /PING
	Commands: /LEAVE, /L, /PART
	Command: /LIST
	Command: /LINKS
	Command: /NICK
	Command: /NOTICE
	Command: /NAMES
	Command: /ME
	DCC.CHAT.AS225
	Command: /MSG
	Command: /MODE
	Command: /INVITE
	Command: /INFO
	Command: /AWAY
	Command: /ADMIN
	Command: /ALIAS
	Command: /VERSION
	Command: /VOICE
	Command: /CONNECT
	Command: /CTCP
	Commands: /OP, /DEOP
	Commands: /BAN, /UNBAN
	Command: /HELP
	Command: /EXEC
	Command: /QUERY
	Command: /NEWWIN
	Command: /MSGWIN
	Command: /ERRWIN
	Command: /ADD
	Command: /REM
	Command: /STAT
	Command: /FRIENDS
	Command: /FREE
	Command: /LOG
	Example /FRIENDS file
	Example /ALIAS file
	Command: /LOAD
	Command: /DCC
	The Future of ChatBox
	ChatBox's Author

